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A probabilistic method is developed to predict the uncertainty bounds on Frequency

Response Functions (FRFs) developed from Finite Element models. A non-intrusive

Polynomial Chaos Expansion (PCE) method is used to predict uncertainty regression

models of the various parameters that make up a curvefit of the FRF: natural

making use of an efficient Latin Hypercube technique. These uncertainty models are

then combined to efficiently determine PDFs of the parameters and also the uncertainty

bounds of the FRFs. The approach is demonstrated using two examples; a simple beam

containing uncertainty in Young’s Modulus, and a full-scale aircraft composite wing

model containing uncertainties in both Young’s modulus and the shear modulus. The

results were compared with Monte Carlo Simulation (MCS) and it was found that the

parameter PDFs and FRF error bounds obtained using a 2nd-order PCE model agreed

very well whilst requiring significantly less computation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Cost competitive, high quality and low lead time product demands are requirements for a wide range of engineering
products requiring accurate modelling techniques. However, unknown physical properties at the design phase and
production design tolerances or inaccuracies introduce variability and uncertainties into the in-service response of the
structure or product. For such real life problems, the deterministic approach has proved inadequate for design quality
assessment and hence there has been the need to explore probabilistic or non-probabilistic approaches. The case
considered here is the prediction of the bounds of the Frequency Response Function (FRF) of a given structure. The most
straightforward technique to explore the effect of uncertainties such as material properties and size tolerances is Monte
Carlo simulation, however, in a wide number of applications the amount of computation required to give meaningful
results is excessive. Consequently, there is a growing need to produce reliable and robust models that incorporate
uncertainties and can predict the effect of uncertainty in a range of parameters in an efficient manner.

Uncertainties [1] can be handled using several theories, such as Probability Theory [2], Fuzzy Theory [3], Evidence
Theory (also known as Dempster–Shafer Theory) [4,5], Bayesian Theory and Convex Model Theory [6,7]. Information gap
decision theory under severe uncertainty has been also devised [8]. The common issue among these theories is how to
determine the degree to which uncertain events are likely to occur, and there are distinct differences between the various
approaches theories as to how this is achieved.
ll rights reserved.
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Nomenclature

ai1 ; ai1i2 . . . deterministic coefficients of Hermite poly-
nomials

[C] damping matrix
H frequency Response Function
Hf fitted Frequency Response Function
j

ffiffiffiffiffiffiffi
�1
p

[K], k global/element stiffness matrix
L beam element length
[M], m global/element mass matrix
mL mass per unit length
n number of modes
p order of Hermite polynomial

bi deterministic coefficients
dij kronecker delta
ci (x(y)) set of multidimensional Hermite polynomial
sx standard deviation of random variable w
w gaussian distributed random variable
wmean mean of random variable w
m mean value
s standard deviation
oi frequency of mode i
zi damping ratio of mode i
xi1 ðyÞ set of independent standard Gaussian random

variables
Gp½xi1 ðyÞ . . . xip ðyÞ� set of multidimensional Hermite

polynomials of order p.
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Some investigation has been undertaken into the influence of uncertainties on FRFs [9,10], the focus to this work. The
hybrid finite element method has been developed to predict the FRF bounds with interval or fuzzy uncertainties [9]. An
approach which is based on sensitivity of the eigen properties to the structural modifications such as mass and stiffness
distribution has been proposed to predict frequency, damping ratio and mode shapes from experimental modal testing
[11]. Similarly, a method for damage detection within a beam is predicted by examining the difference of the imaginary
part of the FRF before and after damage [12].

Developments of probabilistic models are possible via direct use of the stochastic expansion through either the
Karhunen–Loeve (KL) [13] or Polynomial Chaos Expansions (PCE). In the KL expansion, truncated KL series are used to
represent the random field and can be implemented in the Finite Element Model, and either perturbation theory or a
Neuman expansion can be applied to determine the response variability.

Polynomial Chaos Expansion (PCE) is a method that has been used to explore the variability in flutter/divergence and
gust response [14,15], control [16,17], computational fluid dynamics [18,19] and buckling problems [20]. The work of Choi
et al. [20] provides the first application of a least squares-based hybrid approach using a Latin Hypercube sampling (LHS)
technique [25] applied in a non-intrusive way to predict uncertainty in the critical buckling loads of a metallic joined wing
structure subject to variations in Young’s modulus. Five locations on the wing were selected to apply the uncertainty and
an ANOVA (ANalysis Of VAriance) approach was used to find the dominant PCE polynomial coefficients.

The PCE approach is simple to implement when determining the response model and also does not require knowledge
of the random process covariance function. The use of PCE has been found to be an efficient method even when other
techniques such as Lyapunov’s method have failed [16]. The potential of PCE is tremendous because of its simplicity,
versatility and computational efficiency within the framework of Probability Theory. Most PCE applications explore the
effect of random variables on some single response parameter such as flutter speed [15], critical buckling load [20] or
control stability, performance and robustness [16,17].

In this work, the approach developed in [20] is extended to efficiently determine the confidence bounds of FRFs in
mechanical systems containing uncertainty. Rather than having to determine a PCE model for every frequency line of the
FRF, a system identification procedure is employed for each Latin Hypercube test case so that the FRF is represented by a
limited number of parameters (natural frequency, damping ratio, complex amplitude, mass and stiffness residuals). PCE
models of each parameter are then collectively placed into the FRF mathematical description to build a PCE–FRF model that
can be used to predict the FRF bounds in an efficient manner.

The approach is demonstrated using FRFs generated by two examples. The first is a very simplistic metallic FE beam
model with uncertainty in Young’s modulus. The second case is a more realistic composite wing FE model with uncertainty
in both Young’s modulus and the shear modulus. Comparison of the predicted FRF bounds using the PCE approach is made
with Monte Carlo simulations and it is shown that good agreement is found for a substantially lower computational effort.
2. Mathematical model formulation of deterministic frequency response function (FRF)

The equations of motion of a multi-degree of freedom vibration system can be modelled in the classical form [21] for
response y to input force f as

½M� €yþ½C� _yþ½K�y ¼ f (1)

where [M], [C] and [K] are the mass, damping and stiffness matrices, respectively.
The solution of the homogenous form of Eq. (1) can be used to determine the natural frequencies, damping ratios and

corresponding mode shapes. However, assuming a harmonic input and response, the Frequency Response Function matrix
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H between sinusoidal forcing function f at frequency o and output y is found as [21]

yðoÞ ¼HðoÞf ðoÞ (2)

where the FRF matrix is defined as

HðoÞ ¼ ½Kþ ioC�o2M��1 (3)

It is common practice to fit the FRF between each input and output for the first n dominant modes in the form

Hf ðoÞffi
Xn

i ¼ 1

Ai

o2
i �o2þ2jzioio

þArþ
Br

o2
(4)

in which Ai are the complex residues, and Ar and Br are mass and stiffness residuals, respectively and Hf(o) is the fitted FRF.
It is usual to perform a two stage procedure to identify the above model, firstly the frequencies and damping ratios are
calculated either from the eigen solution of the system Eq. (3) or by using a curve-fitting technique such as the Rational
Fraction Polynomial method [22] applied to measured input–output data. Then a linear curve fit is performed on Eq. (4) in
order to determine the residual and residue coefficients.

3. Stochastic modelling

Norbert Wiener introduced a mathematical model of Brownian motion using a multiple stochastic integral with
homogeneous chaos [23]. Subsequently, Ito modified Weiner’s work [24] and showed that any stochastic processes can be
described as a Weiner process. Irregularities due to parameter variations can be described mathematically as a PCE
expansion. Ghanem and Spanos [13] introduced a simple definition of the PCE as a convergent series of the form [20]

uðyÞ ¼ a0G0þ
X1

i1 ¼ 1

ai1G1ðxi1 ðyÞÞþ
X1

i1 ¼ 1

Xi1

i2 ¼ 1

ai1i2G2½xi1 ðyÞ; xi2 ðyÞ�þ
X1

i1 ¼ 1

Xi1

i2 ¼ 1

Xi2

i3 ¼ 1

ai1i2i3G3½xi1 ðyÞ; xi2 ðyÞ; xi3 ðyÞ�þ . . . (5)

where fxi1 ðyÞg
1

1 is a set of independent standard Gaussian random variables, Gp½xi1 ðyÞ . . . xip ðyÞ� is a set of multidimensional
Hermite polynomials of order p, ai1 ai1 i2 . . . are deterministic coefficients and y is the random character of the quantities
involved. The general expression for a multidimensional Hermite polynomial is given by [20]

Gp½xi1 ðyÞ . . . xip ðyÞ� ¼ ð�1Þn
@ne�

1
2x

Tx

@xi1 ðyÞ . . . @xip ðyÞ
(6)

where vector x consists of n Gaussian random variables.
Simplifying Eq. (5) leads to

uðyÞ ¼
Xp

0

biciðxðyÞÞ (7)

in which bi and ci(x(y)) are identical to ai1 ; ai1 i2 . . . and Gp½xi1 ðyÞ . . . xip ðyÞ�, respectively.
Consider the one dimensional Polynomial Chaos model; we can expand the random response u using orthogonal

polynomials in x, which have a known probability distribution, for example say, unit normal. Now, if u is a function of
Gaussian distributed random variable w whose mean is wmean and variance sw2, then x is the normalized variable

x¼
w�wmean

sw
(8)

Hence the response in one dimension can be expressed as

u¼ b0þb1xþb2ðx
2
�1Þþb3ðx

3
�3xÞþb4ðx

4
�6x2

þ3Þþ . . . (9)

where the orthogonal polynomials and x(y) satisfy the following conditions:

c0 ¼ 1; /ciS¼ 0; /cicjS¼/c2
i Sdij 8i; j

/x0S¼ 1; /xkS¼ 0; 8 k odd and /xkS¼ ðk�1Þ/xk�2S (10)

with /:S indicating the expected value operation. The bi terms are unknown coefficients that have to be calculated using
computed test data sets. For the case that we are considering here, the u parameter is the natural frequency, damping ratio,
complex amplitude, phase or the residuals, and the x variable might be the value of longitudinal Young’s modulus or shear
modulus of the wing.

If we have two uncertain variables, for instance the longitudinal Young’s modulus and shear modulus, then it is referred
to as a 2-D Polynomial Chaos model. The order of the model is inferred from the power of x. Using Eq. (3), the expanded
form for a 2-D Polynomial Chaos model in which x1 and x2 are uncertain parameters, can be written as

u2nd ¼ b0þb1x1þb2x2þb3ðx
2
1�1Þþb4x1x2þb5ðx

2
2�1Þ (11)
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The complex amplitude PCE model can be expressed in terms of real and imaginary parts such that

u2nd ¼ b0rþb1rx1þb2rx2þb3rðx
2
1�1Þþb4rx1x2þb5rðx

2
2�1Þþ . . .

jðb0iþb1ix1þb2ix2þb3iðx
2
1�1Þþb4ix1x2þb5iðx

2
2�1ÞÞ (12)

This complex PCE model was converted to amplitude and phase by taking the magnitude and angle between the real
and imaginary parts. Here bir are coefficients of the real part of PCE model and bii are coefficients of the imaginary part of
the PCE model.
Fig. 1. Process to Determine PCE–FRF Models.

0 10 20 30 40 50 60
10−10

10−8

10−6

10−4

FR
F 

M
ag

ni
tu

de

Frequency (Hz)

 

 

0 10 20 30 40 50 60
−200

−100

0

100

200

FR
F 

P
ha

se
 (d

eg
)

Frequency (Hz)

 

 
Actual FRF
Fitted FRF

Fitted FRF
Actual FRF

Fig. 2. Beam Model. Typical Fitted and Actual FRF plots.
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4. Determination of PCE–FRF models

PCE regression models are developed by applying the uncertainty models in Section 3 to the FRF representation
described in Section 2 as shown in Fig. 1.
Table 1
Cantilever Beam Model Statistics of Parameters using PCE and Monte Carlo methods.

Method Mode 1 Mode 2 Mode 3

m s m s m s m s m s m s

Frequency (Hz) Damping Frequency (Hz) Damping Frequency (Hz) Damping

PCE 2.0931 0.0524 0.0083 1.744e�4 13.1180 0.3283 0.0053 7.271e�5 36.7388 0.9195 0.0120 2.780e�4

MCS 2.0931 0.0524 0.0083 1.748e�4 13.1179 0.3284 0.0053 7.269e�5 36.7387 0.9198 0.0120 2.781e�4

Amplitude Phase Amplitude Phase Amplitude Phase

PCE 8.892e�5 5.863e�6 �0.0543 0.0077 1.032e�4 2.636e�6 �0.0314 0.0027 0.0016 1.456e�6 6.589e�4 1.461e�4

MCS 8.895e�5 5.991e�6 �0.0543 0.0077 1.032e�4 2.646e�6 �0.0314 0.0027 0.0016 1.462e�6 6.587e�4 1.454e�4

Mass Residual Stiffness Residual

PCE 7.682e�9 5.688e�10 �8.897e�8 2.518e�8

MCS 7.683e�9 5.720e�10 �8.912e�8 2.592e�8

Statistics of Parameters using PCE and Monte Carlo methods.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

1

2

3

4

5

6

7

8
x 104

 First Mode Amplitude

P
D

F

Monte Carlo
2nd Order PCE
3rd Order PCE

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0
2
4
6
8

10
12
14
16
18 x 104

 Second Mode Amplitude

P
D

F

1.6
14

1.6
16

1.6
18 1.6

2
1.6

22
1.6

24
1.6

26
1.6

28 1.6
3

1.6
32

1.6
34

0

0.5

1

1.5

2

2.5

3 x 105

 Third Mode Amplitude

P
D

F
-0.

11 -0.
1

-0.
09

-0.
08

-0.
07

-0.
06

-0.
05

-0.
04

-0.
03

-0.
02

0

10

20

30

40

50

60

 First Mode Phase

P
D

F

-0.
05

-0.
04

5
-0.

04
-0.

03
5

-0.
03

-0.
02

5
-0.

02
-0.

01
5

0

20

40

60

80

100

120

140

160

 Second Mode Phase

P
D

F

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

2000

2500

3000

 Third Mode Phase
P

D
F

5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8 x 108

 Mass Residual

P
D

F

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2 x 107

 Stiffness Residual

P
D

F

x 10-4 x 10-4

x 10-3

x 10-3

x 10-9 x 10-7

Monte Carlo
2nd Order PCE
3rd Order PCE

Monte Carlo
2nd Order PCE
3rd Order PCE

Monte Carlo
2nd Order PCE
3rd Order PCE

Monte Carlo
2nd Order PCE
3rd Order PCE

Monte Carlo
2nd Order PCE
3rd Order PCE

Monte Carlo
2nd Order PCE
3rd Order PCE

Monte Carlo
2nd Order PCE
3rd Order PCE
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first three modes using PCE and MCS.
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For both cases considered in this paper Gaussian random variables have been used to model positive quantities.
However, it is possible in other situations that should negative values occur, then the PCE might converge to an erroneous
solution should numerical ill-conditioning occur, particularly if higher order expansions be needed. One approach to
remedy this situation is to change the distribution of the uncertainty e.g. Lognormal, squared of a Gaussian or even
uniform. This is an area for future study.

5. Simple beam model example

As a first example, a simple uniform beam finite element model which accounts for bending only in one plane (and
without shear deformation or torsion) is developed to predict the dynamic response of a simple cantilever beam. The beam
Fig. 5. Composite Wing Model Geometry.
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element is expressed as a cubic polynomial which leads to the well-known expressions for the local element mass and
stiffness matrices

m¼
mLL

420

156 22L 54 �13L

22L 4L2 13L �3L2

54 13L 156 �22L

�13L �3L2 �22L 4L2

2
6664

3
7775; k¼

EI

L3

12 6L 12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775 (13)

where L is the element length, mL is mass per unit length and EI is the flexural rigidity. A total of 10 elements were used to
assemble the global mass and stiffness matrices, with proportional damping being introduced in the equation of motion in
the usual manner such that

½C� ¼ a½M�þb½K� (14)

where a and b were taken as 0.2 and 0.0001, respectively.
The deterministic FRF, obtained between two points of the simple cantilever FE model, is shown in Fig. 2 along with a

typical curve fit. Note that the apparent large differences in the phase plot are erroneous and are due to the phase being
plotted between 71801 so that, for example, �1811 is plotted as 1791. This type of phase variation often occurs on
commercial software and is not due to inaccuracies in the fitting process. A 1-D chaos model with variable Young’s
modulus of coefficient of variation of 0.05 was used to impart uncertainty into the model. A total of 15 Latin Hypercube
Samples were taken to provide data for the second-order regression fit. PDF plots, as predicted by PCE model, for the first
three frequencies and damping ratios are shown in Fig. 3 along with PDFs of the complex residues in terms of magnitude
and phase, and also the residuals. To assess the quality of these PDFs, Monte Carlo Simulations were conducted with a total
of 10,000 samples to construct equivalent PDFs. Excellent agreement is observed in each of the PDF plots for the various
parameters as demonstrated with very similar mean and standard deviation results given in Table 1.

Based on these models, a PCE model for the FRF was developed by taking 15 Latin Hypercube samples across the entire
frequency range. The FRF–PCE model was then emulated to predict 99% confidence bounds on the FRF, which were
compared with 10,000 MCS results as shown in Fig. 4 for 2nd and 3rd-order PCE models. An excellent comparison was
achieved for the mean values and also the upper and lower bounds. The similarities between the results for different order
PCE models show that convergence has been achieved.
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Fig. 6. Composite Wing Model. Typical Model and Fitted FRF Plots.

Table 2
Lay-up scheme and material properties for composite wing.

Lay-up Scheme Total Thickness (mm) Material Properties Value

Front Spar ((�451)4)s 1.00 E1 140(GPa)

Rear Spar ((�451)4)s 1.00 E2 10.0(GPa)

Top Skin ((�451)2 , (451)3 ,90)s 1.50 n 0.3

Bottom Skin ((�451)2, (451)3 ,90)s 1.50 G12 5.0(GPa)

Ribs ((�451)2)s 0.50 Ply thickness 0.125 (mm)

Density 1570 (Kg/m3)
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Fig. 7. Composite Wing Model. PDF Distributions of Frequencies, Damping Ratios, Amplitude and Phase of Residues, and Mass and Stiffness Residuals for

First 3 Modes using PCE and MCS.
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6 Composite wing example

As a more realistic test, the composite wing finite element model shown in Fig. 5 was implemented. The thickness-to-
chord ratio for this wing is four percent and a geometrical box is fitted in it as a structural member that has front spar, rear
spar, top skin and bottom. The torsion box was positioned such that its front spar lies at quarter chord and rear spar lies at
the three quarter chord. Ten evenly spaced ribs were included to providing chord-wise stiffness to suppress local panel
modes. Table 2 defines the lay-up orientation and material properties of the composite layers that were used.

A Finite Element Model of the wing was developed using NASTRAN with the FRF analysis performed assuming 2%
structural damping. A typical FRF between the leading and trailing edge wing tips is shown in Fig. 6. Again the curve-fitting
procedure gives good results.
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Table 3
Composite Wing Model Statistics of Parameters using PCE and Monte Carlo methods.

Method Mode 1 Mode 2 Mode 3

m s m s m s m s m s m s

Frequency (Hz) Damping Frequency (Hz) Damping Frequency (Hz) Damping

PCE 2.6043 0.0177 0.0100 2.5214e�6 12.6898 0.0874 0.0100 3.948e�6 31.8241 0.2195 0.0100 6.5887e�7

MCS 2.6043 0.0177 0.0100 2.5942e�6 12.6898 0.0878 0.0100 3.961e�6 31.8241 0.2204 0.0100 6.6126e�7

Amplitude Phase Amplitude Phase Amplitude Phase

PCE 0.2783 0.0018 0.0071 0.0011 0.3055 0.0018 0.0064 9.221e�4 0.3007 5.5852e�4 0.0029 4.5186e�4

MCS 0.2783 0.0018 0.0071 0.0011 0.3055 0.0018 0.0064 9.263e�4 0.3007 5.6051e�4 0.0029 4.5381e�4

Mass Residual Stiffness Residual

PCE �2.759e�6 2.1453e�7 3.6785e�5 4.7319e�6

MCS �2.759e�6 2.1553e�7 3.6785e�5 4.7427e�6
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Table 4
Computational cost for both test cases.

Model Type Method Time(sec)

Beam Monte Carlo Simulation (10 000) 2447

PCE Approach 141

Composite Wing Monte Carlo Simulation (10 000) 81277

PCE Approach 697

A. Manan, J.E. Cooper / Journal of Sound and Vibration 329 (2010) 3348–3358 3357
A PCE model for FRF by taking 60 Latin Hypercube Samples was developed in which 2-D chaos was introduced via
longitudinal Young’s modulus and shear modulus of wing’s spars, skins and ribs. Variation on the longitudinal Young’s
modulus was normal with mean of 140 GPa with standard deviation 2.8 GPa whereas that for the shear modulus was also
normal with mean of 5.0 GPa with standard deviation 0.1 GPa. The FRF–PCE model was then emulated with 400 samples
producing PDF plots which are shown in Fig. 7 for 2nd order models. A Monte Carlo Simulation was conducted with a total
of 10,000 samples to assess the PDFs predicted using the PCE method and it can be seen that there is a good agreement,
although it must be remembered that there are far fewer MCS calculations with this example which have resulted in a
more disjointed amplitude behaviour of the MCS PDFs compared to the first example, but in all cases the frequency
distribution is similar. Table 3 shows the excellent agreement between the mean and standard deviation for all of the
individual modal parameters. Finally, when the individual PCE regression models are combined to give the FRF–PCE model,
Fig. 8 shows that the FRF confidence bands have a very good agreement.

Table 4 shows the computational time required on a PC for both test cases using the Monte Carlo (full simulation and
error bound computation) and PCE (LHS sampling and emulations) approaches. It can be seen that for the simple beam
case, the PCE method requires 5.81% of the computation required for the MCS, whereas for the Composite wing FE model
only 0.86% of the computation is required. These differences will get much greater as the complexity of the structural
model increases.
7. Conclusions

In this paper, an approach to determine a probabilistic FRF model using the Polynomial Chaos Expansion (PCE)
technique is described. PCE models are developed for the modal parameters determined from curve-fitting FRFs obtained
from a Finite Element model using a Latin Hypercube technique to define the test cases. The individual probabilistic
frequency, damping ratio and complex amplitude PCE models are then combined to define the probabilistic FRF–PCE
model. The methodology is illustrated on a simple cantilever beam example with variation in Young’s Modulus and also an
aircraft composite wing FE model in which the longitudinal and shear modulus were allowed to vary. For considered cases,
the PDF estimates using the PCE approach for the modal parameters, and also the overall FRF scatter bounds, compare very
well with those obtained from extensive Monte Carlo simulations even though the PCE-based model is much more
computationally efficient. Further work is required to assess the application of the method when much higher numbers of
uncertain variables are included.
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